新聞資訊
制造商和消費者都在試圖擺脫對化石燃料能源的依賴,電氣化方案也因此廣受青睞。這對于保護環境、限制污染以及減緩破壞性的全球變暖趨勢具有重要意義。電動汽車(EV)在全球日益普及,眾多企業紛紛入場,試圖將商用和農業車輛(CAV)改造成由電力驅動。然而,這種轉變使得電能需求快速增長,給電網帶來了極大的壓力。盡管能效很高
"時間至關重要"——這個古老的慣用語可以應用于任何領域,但當應用于現實世界信號的采樣時,它是我們工程學科的支柱。當嘗試降低功耗、實現時序目標并滿足性能要求時,必須考慮測量信號鏈選擇何種ADC架構類型:∑-Δ還是逐次逼近寄存器(SAR)。一旦選擇了特定架構,系統設計人員便可創建所需的電路以獲得必要的系統
傳統的射頻 (RF) 發送信號鏈通常使用數模轉換器 (DAC) 來生成基帶信號。然后,使用射頻混頻器和本地振蕩器將此信號上變頻為所需的射頻頻率。射頻 DAC 技術取得進步,現在允許直接以所需的射頻頻率生成信號,從而顯著簡化射頻發送信號鏈的設計和復雜性。高頻射頻 DAC 具有平衡差分輸出,而射頻發送鏈和天線為單端
傳感器的應用正在飛速擴展。智能傳感器無處不在,滲透到生活的方方面面。數以萬億計的智能設備讓我們的日常生活更加便捷,即使是最普通的設備和電器也配備了傳感技術。廣泛的傳感技術、計算和連接相結合,推動了物聯網、工業、醫療和汽車應用的全面轉型。恩智浦推出全新低重力加速度傳感器系列恩智浦新一代
前言功率半導體熱設計是實現IGBT、碳化硅SiC高功率密度的基礎,只有掌握功率半導體的熱設計基礎知識,才能完成精確熱設計,提高功率器件的利用率,降低系統成本,并保證系統的可靠性。功率器件熱設計基礎系列文章會比較系統地講解熱設計基礎知識,相關標準和工程測量方法。散熱功率半導體器件在開通和關斷過程中和導通電流時
車載充電器 (OBC) 解決了電動汽車 (EV) 的一個重要問題。它們將來自電網的交流電轉換為適合電池充電的直流電,從而實現電動汽車充電。隨著每年上市的電動汽車設計、架構和尺寸越來越豐富,車載充電器的實施也變得越來越復雜。另外,隨著行業開始青睞更高電壓的電池以實現更快充電,雙向充電變得越來越普遍,系統設計師在車載
2024年11月6日,中國 – 服務多重電子應用領域、全球排名前列的半導體公司意法半導體(STMicroelectronics,簡稱ST;紐約證券交易所代碼:STM) 推出了一款新的面向智能手表、運動手環、智能戒指、智能眼鏡等下一代智能穿戴醫療設備的生物傳感器芯片。ST1VAFE3BX芯片集成高精度生物電位輸入與意法半導體的經過市場檢驗的
WBG的高頻切換帶來了與帶寬和速度相關的挑戰,這些挑戰可以通過新的傳感技術來解決。此外,氮化鎵 (GaN) 和碳化硅 (SiC) 器件對短路條件的耐受性和電流傳感要求不同。當使用GaN 器件時,具有捕獲超快速短路事件所需帶寬的電流傳感器至關重要,因為 GaN 器件的短路耐受時間比 Si 和 SiC 器件短得多。因此,Si 基電源轉換器中
在工程領域,精度是核心要素。無論是對先進電子設備執行質量和性能檢測,還是對復雜系統進行調試,測量精度的高低都直接關系到項目的成功與否。這時,示波器中的垂直精度概念就顯得尤為重要,它衡量的是電壓與實際被測信號電壓之間的一致性。而要實現高垂直精度,關鍵在于兩個因素:一是模數轉換器 (ADC) 的位數,二是示波器
柔性可穿戴電子設備主要由柔性壓阻傳感器材料、柔性傳感器框架、電極連接、信號采集和處理電路組成。其中最重要的部分就是對柔性壓阻傳感器材料的測試,對于用于制造壓阻式傳感器的材料 , 需要全面評估其電學、機械、動態響應和環境穩定性等多方面性能指標 , 以確保材料能夠滿足實際應用的需求。對于柔性材料,其中電